-
Featured services
Think beyond the robots
The successful integration of AI and IoT in manufacturing will depend on effective change management, upskilling and rethinking business models.
Read the blog -
Services
Nutzen Sie unsere Fähigkeiten, um die Transformation Ihres Unternehmens zu beschleunigen.
-
Services
Network-Services
Beliebte Produkte
-
Private 5G
Unser Cloud-nativer Secure-by-Design-Ansatz gewährleistet eine 24/7-Überwachung durch unsere Global Operations Centers, die Ihre Netzwerke und Geräte auf einer „As-a-Service“-Basis verwalten.
-
Verwaltete Campus-Netzwerke
Unsere Managed Campus Networks Services transformieren Campusnetzwerke, Unternehmensnetzwerke sowie miteinander verbundene lokale Netzwerke und vernetzen intelligente Orte und Branchen.
-
-
Services
Cloud
Beliebte Produkte
-
Services
Consulting
-
Edge as a Service
-
Services
Data und Artificial Intelligence
-
-
Services
Data Center Services
-
Services
Digital Collaboration und CX
-
Services
Application Services
-
Services
Sustainability Services
-
Services
Digital Workplace
-
Services
Business Process Services
IDC MarketScape: Anbieterbewertung für Rechenzentrumsservices weltweit 2023
Wir glauben, dass Marktführer zu sein eine weitere Bestätigung unseres umfassenden Angebotes im Bereich Rechenzentren ist.
Holen Sie sich den IDC MarketScape -
-
Erkenntnisse
Erfahren Sie, wie die Technologie Unternehmen, die Industrie und die Gesellschaft prägt.
-
Erkenntnisse
Ausgewählte Einblicke
-
Die Zukunft des Networking
-
Using the cloud to cut costs needs the right approach
When organizations focus on transformation, a move to the cloud can deliver cost savings – but they often need expert advice to help them along their journey
-
So funktioniert Zero-Trust-Sicherheit für Ihr Unternehmen
Sorgen Sie dafür, dass Zero-Trust-Sicherheit für Ihr Unternehmen in hybriden Arbeitsumgebungen funktioniert.
-
-
Erkenntnisse
Copilot für Microsoft 365
Jeder kann mit einem leistungsstarken KI-Tool für die tägliche Arbeit intelligenter arbeiten.
Copilot noch heute entdecken -
-
Lösungen
Wir helfen Ihnen dabei, den Anforderungen an kontinuierliche Innovation und Transformation gerecht zu werden
Global Employee Experience Trends Report
Excel in EX mit Forschung basierend auf Interviews mit über 1.400 Entscheidungsträger:innen auf der ganzen Welt.
Besorgen Sie sich den EX-Report -
Erfahren Sie, wie wir Ihre Geschäftstransformation beschleunigen können
-
Über uns
Neueste Kundenberichte
-
Liantis
Im Laufe der Zeit hatte Liantis, ein etabliertes HR-Unternehmen in Belgien, Dateninseln und isolierte Lösungen als Teil seines Legacysystems aufgebaut.
-
Randstad
We ensured that Randstad’s migration to Genesys Cloud CX had no impact on availability, ensuring an exceptional user experience for clients and talent.
-
-
-
NTT DATA und HEINEKEN
HEINEKEN revolutioniert die Mitarbeitererfahrung und die Zusammenarbeit mit einem hybriden Arbeitsplatzmodell.
Lesen Sie die Geschichte von HEINEKEN -
- Karriere
Topics in this article
Data is the lifeblood of AI models, providing the information they need to function effectively and improve over time. However, with great power comes great responsibility. Ensuring high-quality, secure and private data is paramount for the effective and responsible use of AI technologies.
In this blog, I explore the importance of data governance in the AI revolution and the risks of not adhering to strict data-management practices.
AI is a powerful new asset
The world of AI is undergoing a revolution, and it’s bringing a powerful new asset to the table. AI’s ability to crunch massive data and automate tasks transforms industries, uncovering hidden business opportunities and streamlining operations.
This technological leap is granting organizations a competitive edge, boosting productivity and paving the way for groundbreaking discoveries. By embracing AI, they can unlock immense business value and become leaders in this exciting new era.
But without data, there can be no AI. All algorithms and models use data to calculate a solution or generate an answer to a question. In essence, data is the lifeblood of AI models, providing the input they need to function effectively and improve over time.
Responsible AI (RAI) is all about using AI technology ethically, fairly and responsibly to minimize risks. It involves putting guardrails in place to ensure AI is used for good. Data governance therefore plays a critical role in RAI because the data used to train AI systems is fundamental to their decision-making.
Focus on data quality, security and privacy
Data access in AI must be governed by strict privacy and security controls. AI models should be granted access only to data that is essential for their operation and for which they have the appropriate authorization.
Preparing high-quality, secure and private data for AI is therefore paramount. Data quality is critical as it directly influences AI outcomes, while security and privacy are essential to protect sensitive information and comply with regulations.
Although all aspects of data governance are important, these three areas stand out because of their significant impact on the performance and trustworthiness of AI systems. A comprehensive governance strategy that addresses these areas will facilitate the effective and responsible use of AI.
Don’t leave your data unprotected
Leaving your data unprotected against AI can be a costly gamble. Hackers can leverage AI to launch targeted attacks, leading to hefty fines, legal battles and expensive recovery efforts. Even if a breach isn’t malicious, the reputational damage can be crippling.
Exposed data also puts you at risk of identity theft and manipulation by AI systems designed to exploit personal information. Investing in data protection is therefore an investment in your security and peace of mind.
When AI systems access incorrect data in the corporate world, it can set off a cascade of harmful outcomes. The reliability of the AI’s outputs may be compromised, raising questions about its trustworthiness.
For example, biases in the data can skew the AI’s judgments and violate an organization’s commitment to impartiality and diversity. Such a breach of trust in the AI’s accuracy can have long-lasting negative effects on its acceptance and use.
Legal issues are a major concern, too, as the mishandling of data can result in regulatory breaches and noncompliance with ethical standards. And diverting resources to unproductive AI projects can lead to financial and operational losses.
Strict data governance will mitigate these risks and ensure that AI remains a reliable and efficient business tool.
Am I doing the right thing?
Implementing AI systems can be exciting, but navigating the ethical considerations is crucial. Here are some suggestions to keep you on the right track.
Align your AI goals with your organization’s values. Aim for a positive social impact. Transparency is key: you should be able to explain how your AI makes decisions. This builds trust and allows for human intervention if needed (and it is part of the European Union’s AI Act).
Data governance lays the foundation for RAI. Use diverse, high-quality data that reflects the real world to minimize bias, and involve people from various backgrounds in the development process to ensure fair outcomes. Implement robust data-security measures to protect user privacy and comply with data-privacy regulations.
RAI is an ongoing process. Regularly monitor your AI system’s outputs for bias, and refine your data and algorithms as needed. Be open to learning and adapting as AI technology evolves and societal norms change.
Look ahead to business success
Data governance is a key part of the responsible use of AI technologies. So, put some effort into the quality and protection of your data – it’s your most valuable asset, after all – to avoid negative consequences such as compromised AI outputs or legal and financial issues.